Exercise 8

For each of the following integral equations, classify as Fredholm, Volterra, or Volterra-Fredholm integral equation and find its kind. Classify the equation as singular or not.

$$
\frac{1}{2} x^{2}-\frac{2}{3} x+\frac{1}{4}=\int_{0}^{1}(x-t) u(t) d t
$$

Solution

This is a Fredholm integral equation because both of the limits of integration are constant. It is of the first kind because the unknown function u appears only inside the integral. It's inhomogeneous because of the $(1 / 2) x^{2}-(2 / 3) x+1 / 4$ on the left side. It's not singular since neither of the limits of integration are infinite and the integrand does not become infinite in the interval of integration.

